fpocket Users' Manual

version 1.0 March 24, 2008

authors : Vincent Le Guilloux' & Peter Schmidtke®, supervisor : Pierre Tufféry’

Jfpocket is a protein pocket prediction algorithm. Given a PDB protein structure it enables the
user to identify potent binding sites. Based on Voronoi tessellation, this algorithm is very fast and
particularly well suited for large scale protein binding pocket screenings and development of
scoring functions for binding pocket characterization.

A\ - .
acarbose binding site on alpha amylase (7taa).picture generated using VMD and tachyon
rendering and GIMP post-processing.

1 ICOA - Chemoinformatics and Molecular modeling division — University of 'Orleans
2 MMB - Dept. Physical Chemistry — University of Barcelona
3 MTI - Inserm U973 - Université Paris Diderot






Notes

1. This program uses output coming from Qhull. Qhull is currently not shipped with
Jfpocket and has to be installed seperately. More information about Qhull can be found in
the paper : Barber, C.B., Dobkin, D.P., and Huhdanpaa, H.T., "The Quickhull algorithm for
convex hulls,” ACM Trans. on Mathematical Software, 22(4):469-483, Dec 1996,
http://www.qhull.org

2. Part of this software includes code based on external code developed by the Theoretical
and Computational Biophysics Group in the Beckman Institute for Advanced Science and
Technology at the University of Illinois at Urbana-Champaign. The PDB parser of the
Molfile Plugin of VMD were modified for the purposes of fpocket's PDB parsing.

3. Within the whole documentation code and output from computer programs are
represented and formatted in the following way : 1's -1 > out .t xt

Notes


http://www.qhull.org/

Contents

INOLES cceueerenresnensnensensensnesnesaessaessnsssnsssessnsssessssssssssesssessassasssassssessessssssssassssnsesssassssaseses 1
Contents 2
INErOAUCTION. . ..ccueeieiiieiiiiicticstictinincsnisnicsanisssnesssesssnesssssssessssessssesssssssssssssssssssssanns 5
License & COPYIIGNL.....co.eiiiiiiiiiiiieeee ettt et 5
CONIITDULIONS. ....eeteittte ettt ettt ettt e ettt e e sttt e e sttt e e esabteesaabeeeesabaeeesabeeesannnnnes 5
PUBLICALION. ¢ttt ettt e sttt e et e e et e e s abaee e 5
INSEAllAtioN....cciiiiiieiiieiiticseniinensnnssnecsnnsssnncsanssssesssnssssesssessssssssesssasssssessssssassssssasssssnans 6
PrOTEQUISILES. ....eeeiiitie ettt ettt e ettt e e ettt e e ettt e e st eeeebbeeessbbaeeeeeeaeaaeeeennnns 6
DEPENACIICIES. .....eeeeeiiiiie ettt ettt et et e ettt e e st te e e stbe e e ettt bbaeeeeeaaeaaeeesaanns 6
SYStemM REQUITEIMEIIES. ....couutiiiiiiiiieitieeiee ettt ettt ettt e sttt e e e et eee s 6

How t0 inStall fPOCKEL.....ccuuiiiiiiiiiiiiie et 6
KDNOWI BUES.....eeetiiiiieeeeeee ettt ettt e e e st eeeeeeeeeeeeeees 7
Getting Started........cceeeveieiiiiseissnissnissencsssissnisssnsssnesssisssnssssssssessssssssssssssssssssssssssssssnss 8
TPOCKEL ..ttt ettt ettt e sttt e e e s 8
EXQIPLC. ...ttt ettt e 8

BASIC IIPUL .ottt ettt et sttt sttt e 10

OUIDUL. ..ottt ettt ettt e b e s a e e et e bt e s at e et e e s bt e s att e e e e nbeeeeeabeeas 11

APOCKEL. ...ttt et e ettt sb et e sttt e e st e e e eabae e e eabaeeeean 11
EXQIPLO. ...ttt ettt ettt et s tae e be e e ttaeeeennaaeeennns 11

BASIC TIPUL. ..ottt ettt et ettt et bt e et e e e e bte e e e 12

OUIDUL. ..ottt ettt ettt e et et e bt e s ate e abe e bt e eateeabeeabteeabeteesaabeeeean 13

EPOCKEL. ..ttt ettt ettt et e e e et e e e e 13
Example — tpOCKet 0N QPO STFUCTUTES..........vceuveeeeeeereerieeerieeieesieecseesseessesseesssessseennns 13

TIUDUL. ..ottt et b ettt b ettt e bt e et e e bt e bt e sate e abbeeeeaa 15

Contents



Contents

OUIDUL.....oeeeveeeeee e eetee e st e e e tteeseteesstteestaeeessaeeessseeasseeessseeessseeessseesssaesanssssssseeeeennns 15
Advanced features 17
1§00 T0] ] F PP PUPUPTR 17
Input command [iNE AFGUITENLS. ...........cocuieuieiieiiieieesteete ettt ettt e e e e 17
OUtput files deSCTIPHON. .......cc.ueecuieiiiiiieiteete ettt ettt e 19
APOCKEL. ...ttt ettt et ettt e e sttt et e e e e e e e e e e e s eaineaeee 21
Input cOMmMANd [iNE AFGUIMENES. ..........c.ceeveereeeeriesreerieesteesiesseesseesseesseessseessssseeessnes 21
Output files deSCTIPHON. .......oc..cecuiiiiiiiieiiieteete ettt ettt ettt e e e e e 21
EPOCKET. .ottt ettt ettt e ettt e e sttt e e st e e e eabb e e e eabe et eeeaeaeeeeeean 22
Input command [iNE AFGUIMENLS. ..............cveeeereeeeereesierereeiseeseesseesseesssesseessseeesssseess 22
Actual pocket definition for evaluation of fpocket..............coevvueecvevvivivescreeseervennne 23
POCKEE AESCIIPLOTS. ... vviieiiiieeeeiieeeeiite et e ettt e ettt e e et e e eeteeeesstaeesssssaeessseeesssssreeeeees 24
Number of alpha spheres (normalized) *.............ccccveevenenvininncninieneneneneeeee 24
Density of the cavity (NOFmMAlIZed) ..........ccvevveevveeciieeiieeieecieeeeeste e vee e raee s 24
Polarity Score (NOFMALIZEA) F.......oooeeeeeeieeeieeeeeeeee et e e e 24

Mean local hydrophobic density (normalized)*...........cccococevvieioeenciniiiiiniiieeeenn 24
Proportion of apolar alpha spheres (normalized) *...........ccooooveeeeioeenciieiieeeiiienaen, 24
Maximum distance between two alpha sphere (normalized) ............cccceveveeeeeennnn. 25
HYATOPRODICIEY SCOTE ...ttt e 25
CRATGE SCOTC.....eeeeiieeiteeeteseeete ettt ettt ettt ettt sttt sttt esbteesateeeas 25
VOIUINE SCOVC........oeiiiiiiiiciiieicteeeeeee ettt s s e 25
COMPOSIION Of AMUIAO ACIAS........ccueeeeiiiiiiiiiiiit ettt 25
POCKEE VOIUIIE. ...ttt 25
B-factor score (NOFMALIZEA)...........covecueeecueeciieiieeiiecieeeeeeie ettt ete e e e eeraeeeereee s 26
Cofactor defiNItION. .......cocuieiiiiieiieie ettt e et 26
CUStOMIZING fPOCKEL......eeiiiiiiieeiieeeiee ettt e et e e e b e e enreeeeaaeeeeeean 28
How 10 rebDuild the PACKAGE...............coceeeeieiiiiiiiiiiiiieeeeeeee ettt 28
WFiting YOUT OWN SCOTING fUNCHION..........ceeeceeeeeeeeeeeiieeeieeeeieeeeteeeseaeesenseeesseeesseeennes 29
WFIting YOUT OWI A@SCHIPION .......ccceeeeeeeeeeeeeeeieeeeieeeeeeseteessteesreee e e e e e snnnnseeaeeeeas 29
NOTMALIZING YOUF AESCHIPIOTS. .....cueeeiiieiiiiniiiietesie ettt e 31
Including your deScriptor in dPOCKEL.............cccooecuieieeeiieiieiiesieeeeeee e 33



Contents



Introduction

Introduction

Thanks for taking the time to read this official users' guide of fpocket. In this guide are presented
general functionalities of the fpocket program and its derivatives, dpocket and tpocket. Yes, indeed
fpocket is a package of three distinct programs, mentioned here before. fpocket is an acronym for
“finding” pocket; dpocket is an acronym for “describing” pockets as it is for extraction of physico-
chemical descriptors of pockets; tpocket is an acronym for “testing” pockets, as it is used for testing
on a large scale scoring function for ranking protein cavities developped with fpocket, among each
other.

This is not a usual guide. You can find here elements you can find in usual user guides, but we
included several examples in the getting started section, which should enhance fast understanding of
how to work with fpocket. The getting started guide can be understood like a mini tutorial of basic
functionalities of this software.

License & Copyright

This program is published wunder the GNU general public license. See
http:// www.gnu.org/licenses/gpl.txt for more information about the license.

Vincent Le Guilloux, Peter Schmidtke and Pierre Tufféry disclaim all copyright interests of
fpocket, dpocket and tpocket (which perform protein cavity detection, cavity descriptor extraction,
large scale cavity prediction evaluations, respectively), written by Vincent Le Guilloux and Peter
Schmidtke.

Contributions

This software was developed, validated, documented and distributed by Vincent Le Guilloux &
Peter Schmidtke. Both, contributed equally to this project. The work was initiated and supervised by
Pierre Tufféry.

Publication

This software was submitted for publication as Software paper in BMC Bioinformatics. Upon
publication, the paper explaining methodological details will be freely available on the BMC
Bioinformatics website.


http://www.gnu.org/licenses/gpl.txt

Installation

Installation

Prerequisites

Currently fpocket proposes two different ways for visualization of binding pockets. Both are
based on commonly used molecular visualization tools : VMD[REF] and PyMol[REF]. In order to
use visualization you need to install at least one of both softwares. Currently, visualization using
VMD has better rendering and performances and visualization using PyMol better handling of
binding pockets. You can download VMD for free from http://www.ks.uiuc.edu/Research/vmd/.
PyMol can be freely downloaded from http://delsci.com/rel/099/.

Dependencies

fpocket relies on Qhull. In the officially released version fpocket ships Qhull with it and ghull
compilation is automatically done when compiling and installing fpocket. Thus fpocket has no
depencies that one should previously install in order to run the program.

System Requirements

fpocket is available for Linux/Unix type systems only. Thus fpocket works on Linux/Unix as well
as Mac OSX workstations.

In order to run fpocket, you should have at minimum a Pentium III 500 Mhz with 128Mb of
RAM. This program was co-developed and tested under the following Linux distributions :
openSuse 10.3, Centos 5.2, Fedora Core 7, Ubuntu 8.10 as well as Mac OS X.

How to install fpocket

To install the full package, download the latest fpocket release from
http://sourceforge.net/projects/fpocket. This should usually provide you a file like fpocket-
src-1.0.tgz.

In order to install fpocket now, use the following series of commands in a command line.

tar -xzf fpocket-src-1.0.tgz


http://sourceforge.net/projects/fpocket
http://delsci.com/rel/099/
http://www.ks.uiuc.edu/Research/vmd/

Installation

cd fpocket-src-1.0/
nmake
make test

If the make and make test command yield no errors, your installation can be completed by
typing :
sudo make install

This last command only works if you have administrator rights.

For installing the supplementary data release, please refer to the INSTALL.txt file in you
fpocket-src-1.0 directory.

Known Bugs

No known bugs exist for now. If you encounter any strange behavior, difficulty to install fpocket
or a system specific bug, please contact the developers of this software and provide a bug report.
You can find a template for a bug report in the main directory of the distribution. This template is
called bugreport.txt.

For any question for support on fpocket please use the mailing list of fpocket : fpocket-
support@lists.sourceforge.net



Getting Started

Getting Started

fpocket

To run the following examples, we use several sample input files provided with the package you
have downloaded (situated in the (...)f pocket-1.0/sanpl e/ directory). Consequently, we
suppose that the current directory is set to (...)f pocket - 1. 0/, or any other directory that would
include this sanpl e/ directory and its content.

Example

Here is shown a very simple and straightforward example of how to run fpocket on a single PDB
file downloaded from the RCSB PDB[REF]. The following command line will execute fpocket on
the 3LKF. pdb file situated in the sanpl e directory.

f pocket -f sanpl e/ 3LKF. pdb

It is mandatory to give a PDB input file using the - f flag in command line. If nothing is given,
fpocket prints the fpocket usage/help to the screen. fpocket will use standard parameters for the
detection of cavities. Fore more information about these parameters see the Advanded features
chapter — fpocket section (page 17).

If fpocket works properly the output on the screen should look like this :

=—========== Pocket hunti ng beg| NS ==========
=========== Pocket hunting ends ============

If you have a look now in the sanpl e directory, you will notice that fpocket created a folder
named 3LKF_out/. This folder contains all the output from fpocket, so what you are actually
interested in. If you just want to see rapidly the results, go to the 3LKF_out directory and launch
the 3LKF_VMD. sh script. This script will launch the VMD molecular visualizer and charge the
protein with binding site information coming from fpocket.



Getting Started

Pocket # 1 (red)
Pocket # 2 (grey)

" VMD Main

File Molecule Graphics Display Mouse Extensions Help

Atoms Frames ‘ol

I T A D F Molecule

[ i o
l At
zoom I Loop VI step il 1 _>| speed i I}

Lllustration 1: Explanation of the fpocket VMD output

The illustration above is somehow what you will see if you launch the VMD script. Well, you
will see this in less beautiful, but let us oversee the eye candy we have prepared here for you. VMD
is well suited for representing both information, the volume of alpha spheres and their respective
centers. Usually the visual volume information is not of primordial importance, as the larger alpha
spheres tend to reach far out of the protein and smaller alpha spheres are not visible because they
are recovered by larger ones. As it can be seen within the Main VMD window, the visualization
script charges 3 structures, all of them are explained in more detail in the output section of this
chapter.

If you had a closer look before on the methodological aspects of this algorithm (we invite you to
read the paper) a natural question would be how to represent apolar and polar alpha spheres.
Currently the color code represents only the residue ID (rank of the cavity). If you want to see
characteristics of alpha spheres we invite you to change the representation of alpha spheres. This
can be found by clicking Graphics -> Representations. Another window will show up. There you
select the first molecule (3LKF_out.pdb), like represented on the figure below.



Change ReslD to Name

Hllustration 2: Showing alpha sphere characteristics using VMD

9 G Gr‘aphical'Represéﬁtatini\s

Selected Molecule

[0: 3LKF_out pdb =]
Create Rep Delete Rep
Style Color Selection
Points Name resname STP
Bonds Element not protein ani
Bonds Element protein
lad 000000 i

Selected Atoms
iresname STP|

Draw slyle| Selectioms| Trajectory\ Periodic\

Coloring Methed Iaterial
iNams _VJ ]HardP\astic :j
Crawing Method

Points v Default

Size (4] 10 M

Apply Changes
% Automatically (EFaE

Getting Started

A script for fast visualization using PyMOL is also provided. PyMOL provides nice features
browsing and selecting different pockets, using the predefined selection patterns on the right side of
the main window. However, PyMOL does not interpret well the pqr file format, so alpha sphere
volumes are not accurate and only alpha sphere centers can be shown.

" PyMOL Viewer

PytOL> _

Hllustration 3: fpocket PyMOL output

Basic input

Mandatory (1 OR 2):
1: flag -f : one standard PDB file name.

-10-

-
B
B
B

i
i
i
Ll
B
B




Getting Started

2: flag -F : one text file containing a simple list of pdb path
Optional:

For this see Advanced features chapter — fpocket section (page 17).

Output

Fpocket output is made of many files. To have a detailed overview of those files, see Advanced
features chapter — fpocket section (page 17).

Is there something else? No, you have done. Congratulations, you have successfully performed
your first cavity prediction with fpocket...without any accidents we hope. As you might have seen,
usage of fpocket is rather simple, although it is command line based software (for now).
Furthermore you should have seen that fpocket is very fast, well, lets say if you do not run a P1
100Mhz.

As mentioned before, fpocket provides much more possibilities especially for filtering out
unwanted pockets, clustering of alpha spheres. For all these issues and usage of these more
advanced features, refer to chapter Advanced features, section fpocket (page 17) of this manual.

dpocket

Until now you have seen what the majority of cavity detection algorithms can do. So a part from
speed and hopefully prediction results, nothing distinguishes fpocket from other algorithms like
ligsite, sitemap, sitefinder, pocketpicker, pass ...

This is just partially true, because the fpocket package contains dpocket. D is an acronym for
describing. One purpose a cavity detection algorithm can be used for is the extraction of descriptors
of the physico-chemical environment of the cavity. dpocket allows to do this in a very simple and
straightforward way. As extracting binding pocket descriptors on only one protein would be
somehow meaningless for studying pocket characteristics, dpocket enables analysis of multiple
structures. So now, no longer scripting and automation is necessary to do these kind of things. But
lets have a closer look using again a very simple example you can try on your workstation.

Example

Here we go. dpocket requires one single input file. This input file must be a text file containing
the following information : 1 — the PDB file of the protein you want to analyze and 2 — the ID of the
ligand you would like to have as reference in order to define an explicitly defined binding pocket.
The file used in this example (sanpl e/ t est _dpocket . t xt) looks like this :

dat a/ 3LKF. pdb pcl
dat a/ 1ATP. pdb atp
dat a/ 7TAA. pdb abc

-11-



Getting Started

Here we analyze three pdb files. Note that the ligand name should be separated by a tabulation
from the pdb file name. You can launch dpocket on this sample file using the following command :

dpocket -f sanpl e/test_dpocket. txt

dpocket will yield 3 results files in the current directory. These files will be by default :

dpout _explicitp.txt
dpout _f pocket np. t xt
dpout _f pocket p. t xt

If you want to change naming of these files, use the -o flag in command line to define a new
prefix for the fpocket output files, for example mny_test as prefix would yield
nmy_test_explicitp.txt. The three output files contain the in fpocket implemented pocket
descriptors for each binding pocket found by fpocket :

* _fpocket p. t xt, describes all binding pockets found by fpocket that match one of the
detection criteria. In other word, fpocket found several pocket in the protein, and this file will
contain descriptors of pocket that are considered to be the binding pocket using some detection
criteria.

* _fpocket np. txt, describes on the contrary all pockets found by fpocket that are not
found to be the actual pocket using the detection criteria.

*_explicitp.txt, describes the pockets explicitely defined. By explicitely defined here,
we mean that the pocket will be defined as all vertices/atoms situated at a given distance of the
ligand (4A by default), regardless of what fpocket found during the algorithm.

The ouput files are tab separated ASCII text files that are easy to parse using statistical software
such as R. Thus statistical analysis of pocket descriptors becomes a very straightforward and easy
process. Basically, the two first files might be used to establish a new scoring function as they
describes what fpocket finds, while the last file could be used for a more detailed and accurate
analysis of the exact part of the protein that interact with the ligand.

For more details of the output refer to the output section below, or to dpockets Advanced features
section (page 21).

Basic input

Mandatory:

1: flag -f : a dpocket input file, this file has to contain the path to the PDB file, as well as
the residuename of the reference ligand, separated by tabulation.

Optional:
1 : flag -o : the prefix you want to give to dpocket output files

dpocket offers much more optional parameters in order to guide the pocket detection. For
this see Advanced features chapter — dpocket section (page 21).

-]12-



Getting Started

Output

For more details of the output refer to the output section below, or to dpockets Advanced features
section (page 21).

In conclusion of this first very easy dpocket run, you can see that you have a very fast and
reliable tool to extract pocket descriptors, of binding pockets and “non binding pockets” on a large
scale level. These descriptor files provide an excellent tool for further statistical analysis and model
building, which leads immediately to your wish to write a new scoring function for ranking cavities
using the different descriptors. Well, fpocket, dpocket and tpocket are very useful tools to do exactly
this! So go ahead. Lets suppose you have passed several thousands of PDB files and analyzed
statistically the significance of all descriptors. You have set up a new scoring function. Now you
have an external test set of PDB files you haven't tested. How can you evaluate your scoring
function? This is actually also a very easy task, using tpocket.

tpocket

As already mentioned in the preceding paragraph, tpocket can be used in order to evaluate
rapidly cavity scoring functions. If you are for example in the pharmaceutical industry and you want
to set up the ultimate drugability prediction score, you might be able to do this with fpocket and
dpocket. Afterwards you can actually test your method using tpocket. T is an acronym for testing,
here.

Something fancy we did not tell you about before is, that you can also test your scoring function
on apo structures using tpocket. The only requirement is the need to align holo and apo structure to
obtain a space correspondance between apo and holo pocket. But lets explain this with an example.
Of course, testing a holo dataset is even more easy, you just need to provide the resname of the
ligand and tpocket will do the rest.

Example — tpocket on apo structures

If you had a look in the publication of fpocket, you might have seen that the algorithm was
validated on a dataset of 48 proteins previously used to evaluate several pocket detection algorithms.
As fpocket programmers are, by definition, very nice people, they have included this data set (holo
and aligned apo structures) in the distribution of fpocket, released as fpocket-1.0-data. So let us use
this set as example here. When you extract the dataset in your folder you should have a data folder
containing among others two files, pp_apo-t .t xt and pp_cpl x-t. t xt. The first file is a tpocket
input file in order to assess the capacity of the scoring function to rank correctly known binding
sites on apo structures. The second file is also a tpocket inputfile, but this time for known binding
sites on holo structures. Here is a part of pp_apo-t. t xt :

dat a/ pp_dat a/ unbound/ 1Q F- 1ACJ. pdb dat a/ pp_dat a/ conpl ex/ 1ACJ. pdb t ha
dat a/ pp_dat a/ unbound/ 3APP- 1APU. pdb dat a/ pp_dat a/ conpl ex/ 1APU. pdb iva
dat a/ pp_dat a/ unbound/ 1HSI - 11 DA. pdb dat a/ pp_dat a/ conpl ex/ 11 DA. pdb  gnd
dat a/ pp_dat a/ unbound/ 1PSN- 1PSQO. pdb dat a/ pp_dat a/ conpl ex/ 1PSO. pdb iva

13-



Getting Started

dat a/ pp_dat a/ unbound/ 1L3F- 2TMN. pdb dat a/ pp_dat a/ conpl ex/ 2TMN. pdb po3
dat a/ pp_dat a/ unbound/ 3TMs- 1BI D. pdb dat a/ pp_dat a/ conpl ex/ 1BI D. pdb UwvpP
dat a/ pp_dat a/ unbound/ 8ADH 1CDO. pdb dat a/ pp_dat a/ conpl ex/ 1CDO. pdb NAD
dat a/ pp_dat a/ unbound/ 1HXF- 1DWD. pdb dat a/ pp_dat a/ conpl ex/ 1DVWD. pdb M D

Here the first column contains the path to the apo structure, aligned to the holo structure, which
is given in the second column. Using a holo dataset, the first and the second column would be the
same. The third column indicates the PDB HETATM code of the ligand in the holo structure that is
situated in the binding site.

You can use this file to run tpocket using the following command line :

t pocket -L datal/pp_apo-t.txt

Let us continue with the more interesting case, the first example, with a lot of structures. After
some time of calculation, tpocket will provide two standard output files. The moment has come, you
will finally know if you discovered the ultimate method of drugability prediction, or sugar binding
site prediction or whatever. The first file is called by default stats_g.txt. It contains global
statistics about the prediction using all evaluation criterias available in tpocket, so for example how
many binding sites you found among the 3 first ranked cavities. For representational purposes only
the first of the six tables available in this file is depicted hereafter :

Rati o of good predictions (dist = 4A)

Rank <= 1 0. 69
Rank <= 2 0.83
Rank <= 3 0.94
Rank <= 4 0.94
Rank <= 5 0.94
Rank <= 6 0.94
Rank <= 7 0.94
Rank <= 8 0.94
Rank <= 9 0.94
Rank <= 10 0.94
Mean di st ance 1 2.924573

Mean rel ative overlap : 39.373226

This table schedules the capacity of your scoring function to identify the binding sites of the 48
apo structures using the criteria published within [REF]. Not represented here, tpocket provides two
other, maybe more accurate, measures for a correctly identified binding site. These measures are
explained in more detail in the Advanced features — tpocket - correctly identified binding site
section (page ), as they can be a bit more tricky.

The second output file provides more accurate statistics about each structure analyzed. This file,
called st at s_p. t xt enables the user to analyze more closely why scoring might not work well on
a specific structure. Here is an extract of the first columns and lines of this file :

LIG| COVPLEXE | APO| NB_PCK | OVLP1 | OVLP2 | DIST.CM| PCSl | POS2 | POS3

_]4-



THA
| VA
Q\D
| VA
PCB
UVP
NAD
M D

1ACJ. pdb
1APU. pdb
11 DA. pdb
1PSO. pdb
2TMWN. pdb
1BI D. pdb
1CDO. pdb
1DWD. pdb

1Q F- 1ACJ. pdb
3APP- 1APU. pdb
1HSI - 11 DA. pdb
1PSN- 1PSO. pdb
1L3F- 2TMN. pdb
3TVB- 1BI D. pdb
8ADH 1CDO. pdb
1HXF- 1DVD. pdb

22
4
4
9

10

15

18

10

79.

0.
82.
80.
58.
63.

0.
93.

31 78. 33 0. 00 1 1
00 0. 00 3.43 0 0
69 81. 65 3.19 1 1
00 51. 38 3. 49 1 1
33 72.00 2.69 1 1
64 60. 78 3.52 1 1
00 0. 00 3.41 0 0
48 81. 37 3. 86 1 1

Getting Started

PRRRRPRRRO

Using this output you have a detailed view of what worked and what did not worked for all
criteria. For instance, in this example, fpocket detects well all apo binding sites a part from the first
one using the PocketPicker criterion for binding site identification (DIST_CM). POS3 corresponds
to the rank of the cavity using the scoring function of fpocket. You have further information about
the number of pockets per protein and the exact overlap with the actual pocket.

Now if you want to assess your scoring function on holo structures, you also can use tpocket.
This time you only have to provide the pp_cplx.txt, also provided within the distribution. As you
can see, this file is very similar to pp_apo.txt. Only the first column repeats the path to the complex
structure like this :

dat a/ pp_dat a/ conpl ex/ 1acj . pdb

dat a/ pp_dat a/ conpl ex/ 1apu
dat a/ pp_dat a/ conpl ex/ 1i da.
dat a/ pp_dat a/ conpl ex/ 1pso.
dat a/ pp_dat a/ conpl ex/ 2t rm.
dat a/ pp_dat a/ conpl ex/ 1bi d.
dat a/ pp_dat a/ conpl ex/ 1cdo.

Input

Mandatory:

pdb
pdb
pdb
pdb
pdb
pdb

dat a/ pp_dat a/ conpl ex/ 1acj . pdb
dat a/ pp_dat a/ conpl ex/ 1apu. pdb
dat a/ pp_dat a/ conpl ex/ 1i da. pdb
dat a/ pp_dat a/ conpl ex/ 1pso. pdb
dat a/ pp_dat a/ conpl ex/ 2t m. pdb
dat a/ pp_dat a/ conpl ex/ 1bi d. pdb
dat a/ pp_dat a/ conpl ex/ 1cdo. pdb

t ha
iva
qnd
iva
po3
unp
nad

1: flag -L : a tpocket input file, this file has to contain the paths to the PDB files (apo, holo
or holo,holo if you want to test fpocket only on holo structures), as well as the residuename of the
reference ligand, separated by tabulation.

Optional

1 : flag -o : the prefix you want to give to tpocket detailed statistics

2 : flag -e : the prefix you want to give to tpocket general statistics

tpocket offers much more optional parameters in order to guide the pocket detection. For
this see Advanced features chapter — tpocket section (page ).

Output

Using standard parameters on the example tpocket list given in the example paragraph above,

tpocket returns two output files :

-15-



Getting Started

e stats_p.txt : This file contains the detailed statistics of tpocket. The name and the
ligand of the analyzed PDB structure are repeated, as well as the exact overlap of the
fpocket identified binding pocket with the actual binding pocket (identified with the help of
the ligand, called OVLP here). You will see two different overlaps in the output. For further
informations refer to advanced features on page . Furthermore, the distance criterion used in
the Chemistry Central Journal paper for publication of PocketPicker was used (DIST_CM).
Next, you can also have exact information about the rank of the cavity using the fpocket
scoring function.

e sats_g.txt : Second, tpocket provides more general statistics about pocket
identification on the dataset provided. For both overlap criterions the ranking performance
(the capacity of the fpocket scoring to rank correctly a binding site having a certain
minimum overlap with the actual binding site) is printed into this file. Furthermore the
distance criterion published in [REF] is also evaluated. Thus, statistics in this file gives you
a rapid overview over the global performance of your method.

Summarizing features of tpocket, one could retain, that tpocket is a very fast way to test fpockets
performance on your own dataset and test your own scoring functions for ranking purposes of
identified binding sites.

You have finished the Getting started section. We hope that you notice the usefulness of this
package of programs for the research of new features, descriptors and scoring functions in the
binding site identification field. Well, this was only a very fast overview over the very basic features
of fpocket, dpocket and tpocket. If you want to dive into development of your own pocket
descriptors and scoring functions, or if you want to change the pocket detection parameters for your
purposes, continue with the Advanced features section, next.

-16-



Advanced features

Advanced features

You want to know more about fpocket? This is the section for you, here we tried to compile in a
(we hope) comprehensive manner the most important details of fpocket, dpocket and tpocket, to
which you have access by command line. It is primordial to know, that fpockets performance was
assessed and scoring function was established for standard parameters. The performance of pocket
detection and scoring is highly dependent on these parameters, so keep in mind that you might have
to adapt scoring to your specific problem.

Note that this section does not provide too much information about the theoretical background of
the way fpocket works. In order to learn more about this read the Materials & Methods of the freely
available paper [REF] on the BMC Bioinformatics website. Nevertheless, we tried to keep it as clear
as possible, using some application examples.

fpocket

Input command line arguments

Mandatory:

The simplest way to run fpocket is either by providing a single pdb file, or by providing a list of
pdb file, stored in a simple text file. You will need one of these two input to run fpocket:

e -f :one standard PDB file that you want to analyze with fpocket

e -F :asimple list of pdb files.

Optional:

e -m : (default 3A) This flag enables the user to modify the minimum radius an alpha
sphere might have in a binding pocket. An alpha sphere is a contact sphere, that touches 4
atoms in 3D space without having any internal atoms. Here 3A allow filtering of too small
(protein internal) alpha spheres. I you want to analyze internal interstices, lower this
parameter. In the contrary, if you want to analyze more solvent exposed cavities, you can
raise this parameter in order to filter out too buried cavities.

e - M: (default 6A) Here you can modify the maximum radius of alpha spheres in a pocket.
An alpha sphere is a contact sphere, that touches 4 atoms in 3D space without having any
internal atoms. Here 7A allow to filter out too large contact spheres, that are lying on the
protein surface. If you want to analyze very flat and solvent exposed surface depressions,
raise this parameter. For analysis of buried parts of the protein you can lower this parameter.
Higher radii might be more interesting for identification of protein protein binding sites or

-17-



Advanced features

polysaccharide binding sites. Smaller radii enable detection of buried cavities for small
organic molecules (drugs, for instance).

® -i : (default 35) This flag indicates how many alpha spheres a pocket must contain at
least in order to figure in the results provided by fpocket. This parameter enables filtering of
too small cavities. Thus, if you want to analyze smaller cavities also, lower this parameter, if
you are only interested in huge cavities, like NADP binding sites, you can raise it in order to
retain only very few pockets in the end. To give you an idea, a rather big cavity, like a
NADP binding site, can have hundreds of alpha spheres. Thus, 30 as standard parameter
enables also to keep smaller binding sites.

® - A: (default 3) Fpocket distinguishes between two types of alpha spheres. Polar alpha
spheres and apolar alpha spheres. This flag ranges from O to 4 and modifies the definition
of the alpha sphere type. By default, an alpha sphere contacting at least 3 apolar atoms
(having an electronegativity below 2.8) is considered as apolar. If this is not the case it is
considered as polar.

e -D: (default 1.73A) fpocket is based on Qhull. Basically fpocket submits a set of points

(atom positions of the protein) to Qhull and Qhull returns a set of voronoi vertices and
edges and connectivity information. fpocket performs, after a first filtering of dumb alpha
spheres, a first alpha sphere clustering step. Later clustered alpha spheres will define a
pocket. This parameter here enables the user to modify the first clustering step. fpocket
seeks alpha spheres that are at most at 1.73A distance from the current alpha sphere and
connected to it by a Voronoi edge. This clustering step will create small, very local clusters.
If you want to decrease the size of these clusters of alpha spheres, decrease this parameter.
You will have as result a lot of small pockets (do not forget to modify -i in order to see very
small pockets). If you want to cluster more generously to already larger pockets in the first
step, increase this parameter.

e -1 :(default 4.5A) This parameter influences the second clustering step of small pockets
to larger pockets. For each small initial pocket (alpha sphere cluster) the center of mass is
calculated. Next, all pockets that have their centers of mass at most at a distance of 4.5A are
clustered together and form a bigger pocket. Similarly to -D, if you want to decrease the size
of the pocket, decrease this parameter. In the contrary if you want to have larger cavities as
result, increase this parameter.

® -5 : (default 2.5A) The last clustering step is a multiple linkage clustering. Here every
pocket is checked for having at least n alpha spheres at a maximum of 2.5A from alpha
spheres of another pocket. Increasing this distance will yield huger pockets and descreasing
smaller pockets. The parameter n can also be modified using the following flag.

e -n: (default 2) The number of alpha spheres a pocket has to have close to alpha spheres
of another pocket in order to be clustered together in the last clustering step. Be careful, this
clustering depends also on the distance criterion (-s flag). If you want to well distinguish
surface cavities separated by some small barriers of the protein surface you can increase
this parameter or leave it like that. In the contrary if you want to detect larger binding site,
that might even bridge of surface protrusions set this parameter to 1 or 2.

® - p : (default 0.0) This is another parameter for filtering unwanted pockets. It defines the
maximum ratio of apolar alpha spheres and the number of alpha spheres in a pocket in
order to keep the pocket in the results list. That is to say, by default every pocket is kept

-18-



Advanced features

(0.0). Now, if you would like to filter rather hydrophobic pockets, raise this parameter and
very polar cavities will be filtered out. This parameter is a ratio, not a percentage, thus it
ranges from O to 1.

® -V : (default 2500) By default, pockets volume are calculated using a monte-carlo
algorithm. Basically, the algorithm pick a random point in the space and check if it is
included in any alpha sphere, and store this status. This is repeated N times, and we
estimate the volume of the pocket using ratio between the number of hit and the number of
iteration, scaled by the size of the box. This parameter defines the number of iteration to
perform. Of course, the higher the value is, the greater the accuracy will be, but the
performance will be slowed down.

e -b : (NOT USED BY DEFAULT) This option allows the user to chose a discrete
algorithm to calculate the volume of each pocket instead of the Monte Carlo method. This
algorithm put each pocket into a grid of dimention (1/N*X ; 1/N*Y ; 1/N*Z), N being
the value given using this option, and X, Y and Z being the box dimensions, determined
using coordinates of vertices. Then, a triple iteration on each dimensions is used to estimate
the volume, checking if each points given by the iteration is in one of the pocket’s vertices.
This parameter defines the grid discretization. If this parameter is used, this algorithm will
be used instead of the Monte Carlo algorithm.

Warning: Although this algorithm could be more accurate, a high value might dramatically

slow down the program, as this algorithm has a maximum complexity of
N*N*N*nb_vertices, and a minimum of N*N*N !!!

Output files description

fpocket yields output directly in the directory of the data file, creating a directory using the name

of the PDB file followed bu the _out extension. Here, the command || sanpl e/ 3LKF _out of
the current sample run would look something like this:
total 332
-rwr--r-- 1 peter users 769 Nov 29 00: 14 3LKF. pni
-rwr--r-- 1 peter users 698 Nov 29 00: 14 3LKF.tcl
-rwWXr-xr-x 1 peter users 30 Nov 29 00: 14 3LKF_PYMOL. sh
-rwxr-xr-x 1 peter users 41 Nov 29 00: 14 3LKF_VMD. sh
-rwr--r-- 1 peter users 245835 Nov 29 00: 14 3LKF _out. pdb
-rwr--r-- 1 peter users 6725 Nov 29 00: 14 3LKF_pockets.info
-rwr--r-- 1 peter users 49355 Nov 29 00: 14 3LKF_pockets. pqr
drwxr-xr-x 2 peter users 4096 Nov 29 00: 14 pockets

As you can see, fpocket provides a lot of files and another subdirectory. However, majority of
these files are necessary for easy visualization of binding pockets. Lets explain the content and
utility of each file :

e 3LKF. pm : thisis a PyMOL script for visualization of binding pockets using PyMOL
e 3LKF. tcl :this a tcl script for visualization of binding pockets using VMD

e 3LKF_PYMOL.sh : this is the executable script to launch fast visualization using
PYMOL

-19-



Advanced features

e 3LKF_VMD. sh : this is the executable script to launch fast visualization using VMD

e 3LKF_out. pdb : this is the most important file, it contains the initial PDB structure
given as input. Non cofactor HETATM occurrences will be stripped off in this file
compared to the original PDB input file. The PDB file contains centers of alpha spheres
using the HETATM definition as dummy atoms. These alpha sphere centers are attached in
the end of the PDB file, using the STP residue name (for site point). Apolar alpha spheres
carry the atom name APOL, polar alpha spheres the atom name POL. Pockets are sets of
alpha spheres. They can be distinguished by residue number. Thus residue STP 1 would be
the first binding pocket according to fpocket. To show this more clearly here is an extract of
the 3LKF_out

ATOM 2349
ATOM 2350
ATOM 2351
ATOM 2352

HETATM 2736
HETATM 2756
HETATM 3208
HETATM 3208

CD
CE
NZ
OXT
PCL
PCL
PCL
PCL

LYS
LYS
LYS
LYS
STP
STP
STP
STP

. pdb :

o000 >»>»>r>

299
299
299
299

1

1
1
1

. 679
10.
11.
. 240
18.
18.
18.
18.

371
749

291
445
325
450

16.
16.
15.
20.
37.
37.
37.
37.

827
314
794
009
420
638
403
618

105.
104.
104.
107.
83.
83.
83.
83.

636
370
597
670
622
606
631
610

coecoerkpRRE

.00

00
00
00
00
00
00

. 00

19.91
25.17
32. 36
16. 06
.00
00
.00
.00

cocoo

V
V
Ve
Ve

D O0Z00

e 3LKF_pockets. pgr : This file contains all alpha sphere centers, as the 3LKF_out.pdb
file, but contains no information about the protein structure. Furthermore using the pqr
format enables writing of the van der Waals radius of atoms explicitely in this file. Here this
possibility was used to output the radii of alpha spheres of a pocket. Charging this pqr file,
one can analyze more precisely the volume recognized by fpocket. Note that, currently only
VMD supports reading this format correctly. PyMOL is able to read pqr file, but does not

interpret van der Waals radii.

e pockets/ : Well, again a subdirectory. But I promise, it's the last one. For development
purposes or easy analysis, fpocket proposes this directory which contains according to the

current example :

pocket O_at m pdb

pocket O_vert. pgr

pocket 1_at m pdb

pocket 1 vert. pgr

pocket 2_at m pdb

pocket2 vert. pqgr
pocket 3_at m pdb
pocket 3_vert. pgr
pocket4 at m pdb
pocket 4_vert. pgr

pocket5 at m pdb

pocket 5_vert. pgr

pocket 6_at m pdb

pocket 6_vert. pgr

pocket 7_at m pdb

pocket 7 _vert. pqgr
pocket 8_at m pdb
pocket 8_vert. pgr
pocket 9 _at m pdb
pocket 9 _vert. pgr

The *_at m pdb files contain only the atoms contacted by alpha spheres in the given
pocket. Complementary to this information, * _vert. pqr files contain only the centers and
radii of alpha spheres within the respective pocket. As extensions mention, atoms are output
in the PDB file format and alpha sphere centers in the PQR file format.

-20-



Advanced features

dpocket

Input command line arguments

Mandatory:

e -f : adpocket input file, this file has to contain the path to the PDB file, as well as
the residuename (PDB HET residue tag, like “heni’, for heme) of the reference ligand,
separated by a tabulation. See the Getting started section for an example of such a file
(page 11).

Optional:

® -0 : (default dpout) the prefix you want to give to dpocket output files. The standard
will produce three output files named dpout_fpocketnp.txt, dpout_fpocketp.txt,
dpout_explicitp.txt.

e - e : Use the first explicit interface definition (default): we define the explicit pocket as
being all atoms contacted by alpha spheres situated at a distance of d A° from any
ligand atom.

e -E :Use the second explicit interface definition: we define the explicit pocket as
being all atoms situated at a distance of d A° from any ligand atom.

e -d: The distance criteria used for the explicit pocket definition.

Last, all optional parameters used by fpocket are also accessible on command line through
dpocket. Refer to the preceding paragraph to see details about fpocket parameters.

Output files description

As shown in the example, dpocket creates 3 output files. Lets describe them a bit more in detail
here :

e dpout_explicitp.txt : This file contains all pocket descriptors implemented in
fpocket of the explicitly defined binding pocket. What does this mean, explicitly? In the
input you have associated a ligand identification to each PDB file. This ligand is used by
fpocket in order to identify the actual binding pocket. If you want to know more about this
process, refer to the Advanced features section of dpocket (page 21). Now let us have a look
was is actually in this file.

pdb |igand overlap Iig _vol pocket_vol nb_al pha_spheres nean_asph_ray
dat a/ 3LKF. pdb PC 100.00 132.90 1678.64 29 3.9

dat a/ 1ATP. pdb ATP 100.00 322.62 2127.53 65 3.59

dat a/ 7TAA. pdb ABC 100.00 608.66 4977.48 97 4.20

Note that this is only an extract of this file. It contains a lot of columns (descriptors) that are

21-



Advanced features

not represented here. The first line describes the nature of the entry. The next line
recapitulates the pdb structure analyzed (dat a/ 3LKF. pdb), the ligand used as reference
(PC). Next the overlap between the actual and found binding pocket is shown, here 100% as
this is an explicitly defined binding pocket. The next entries can be used as descriptors, like
the ligand volume, the pocket volume, the number of alpha spheres in the binding pocket,
the mean alpha sphere radius ... For a complete list of all implemented descriptors in
fpocket, refer to the Advanced features — Pocket descriptors section (page 24).

The volumes calculated here are not accurate at all. If you want to calculate accurate
volumes you have to change parameters for volume calculation. As volume calculations are
generally over-estimated using alpha sphere approaches, especially for open binding
pockets, this calculation is made available, but uses the minimum sampling for the
calculation. For more accurate calculation significantly more calculation time would be
necessary.

e dpout_fpocketnp.txt : This file contains the same kind of descriptors as the
preceding one, but this time for pockets identified by fpocket, that are “non binding
pockets”. Non binding pockets means here, that the pockets do not correspond to the pocket
where the reference ligand binds. Be careful, this does not necessarily mean that other
pockets do not bind anything.

e dpout _f pocket p. txt : The last file is also formated the same way as the preceding
both. This file contains the binding pocket, this time identified by fpocket and not explicitly
by the ligand.

tpocket

This program of the fpocket package is certainly very useful for testing new scoring methods
rapidly on a large dataset of protein ligand complexes. However one might encounter difficulties to
understand results, interest, advantages and drawbacks of this methodology. In order to facilitate
your understanding of this package we provide some more fundamental information first, before
treating more practical questions about tpocket.

Input command line arguments

Mandatory:

e - L :atpocket input file. This file has to contain the paths to the PDB files (apo, holo or
holo,holo if you want to test fpocket only on holo structures), as well as the residuename
(PDB HET residue tag, like “hemi’ for heme) of the reference ligand, separated by
tabulations.

Optional:

® -0 : (default ./stats_p.txt) The filename you want to give to tpocket detailed
statistics.

® -e : (default ./stats_g.txt) The filename you want to give to tpocket global

22-



Advanced features

statistics.

e -d : Distance criteria used for one of the 3 definition of a pocket: All atoms situated at
a distance lower of equal that d will be considered as part of the actual pocket.

e -k : Keep fpocket output for each pdb test.

Last, all optional parameters used by fpocket are also accessible on command line through
tpocket. Refer to page 17 to see details about fpocket parameters.

Actual pocket definition for evaluation of fpocket

Delimiting, and more generally defining what is the exact binding pocket of a protein in an
automated way is not that easy. Finding a criteria that evaluate correctly the ability of fpocket to
detect the actual binding site of a protein is consequently even more difficult.

Tpocket makes use of 6 different ways to determine if a pocket found by fpocket could be
considered as the actual binding pocket, with respect to a given ligand:

e 1 The actual binding site is reduced to a single point, the barycenter of the pocket
(calculated using alpha spheres). The binding pocket is defined as the pocket which
barycenter is situated at a distance of 4A of any ligand atom. It corresponds to the Ppc
discussed in the paper.

e 2 The actual binding pocket is defined by the set of atoms that are in contact with
alpha sphere that are nearby (< 3A) the actual ligand. This set of atoms is then compared to
all atoms contacted by all voronoi vertices included in each pocket found by fpocket.
WARNING: this is currently not safely usable for an holo/apo dataset.

e 3  The actual binding pocket is defined by the set of atoms that are nearby (4A) the
actual ligand. The same procedure as for the first definition is then applied to say whether a
pocket can be considered as the actual pocket or not. WARNING: this is currently not
safely usable for an holo/apo dataset.

e 4  The actual binding pocket is defined by the set of alpha sphere nearby (< 3A) the
actual ligand. Then, for a given pocket, we calculate the correspondence between alpha
sphere in the pocket, and alpha sphere in the actual binding pocket. If this ratio exceed a
certain value (25%), we consider this pocket as being the actual pocket.

e 5 For a given pocket, we calculate the proportion of ligand atom that are nearby (<
3A) at least one alpha sphere of pocket. If this proportion exceed a certain value (50%), we
consider this pocket as being the actual pocket.

e 6 A combination of both 5" and 6™ criteria described above. If both 4™ and 5"
criterion are satisfied, then this criteria is. This corresponds to the MOc (Mutual Overlap
criterion) discussed in the paper.

The reason why we choose 3A for the criteria 2, 4 and 5 is quite simple: as in the current
algorithm, the minimum radius of an alpha sphere is 3A, a ligand atom situated at a distance lower
or equal than this value can be considered as included in this alpha sphere, and therefore detected.
Of course, this applies to alpha sphere with higher radius too.

All of these criteria have their strengths and witnesses, that's why we choose to implement all of

23-



Advanced features

them.

Pocket descriptors

In order to discriminate an interesting pocket from a lot of uninteresting ones, fpocket uses
descriptors for each pocket. A scoring function, using these descriptors, was trained to well identify
what we generally call “binding site”. Here are set together all descriptors implemented in fpocket.
The ones that are actually used for scoring are marked with a *, and the one having the tag
normalized associated with have a normalized (ie. scaled to a [0, 1] range, the highest (resp the
lowest) value of a given descriptor being set to 1 (resp 0)) equivalent descriptor.

Number of alpha spheres (normalized) *

As the title says, this is surely the most simple descriptor. The number of alpha spheres reflects
generally more or less proportionally the size of the cavity.

Density of the cavity (normalized) *

This descriptor tends to measure the density and “buriedness” of a pocket. It is nothing else than
the mean value of all alpha sphere pair to pair distances in the binding pocket. Thus, a small value
indicates a rather big compactness of the binding pocket and thus a rather burried pocket. Larger
values give indication about more extended and exposed cavities.

Polarity Score (normalized) *

In the contrary to hydrophobicity this descriptor tries to measure the hydrophilicity character of
a binding pocket. To each residue of the binding pocket a polarity score is assigned (as published on
http://www.info.univ-angers.fr/~gh/Idas/proprietes.htm). The final polarity score is the mean of all
polarity scores of all residues in the binding pocket. This is extremely approximative, so should not
be overestimated. Each residue is evaluated only once.

Mean local hydrophobic density (normalized)*

This descriptor tries to identify if the binding pocket contains local parts that are rather
hydrophobic. For each apolar alpha sphere the number of apolar alpha sphere neighbors is detected
by seeking for overlapping apolar alpha spheres. The sum of all apolar alpha sphere neighbors is
divided by the total number of apolar alpha spheres in the pocket. Last this score is normalized
compared to other binding pockets.

Proportion of apolar alpha spheres (normalized) *

This descriptor, returned as percentage, reflects the proportion of apolar alpha spheres among all
alpha spheres of one pocket identified by fpocket. This can reflect somehow the hydrophobic/-philic

24


http://www.info.univ-angers.fr/~gh/Idas/proprietes.htm

Advanced features

character of a binding pocket.

Maximum distance between two alpha sphere (normalized)

This descriptor store the maximum distance found between two alpha sphere in a given pocket.

Hydrophobicity Score

This descriptor is based on a residue based hydrophobicity scale published by Monera & al. in
the Journal of Protein Science 1, 319-329 (1995). For all residues implicated in the binding site the
mean hydrophobicity score is calculated and is used as descriptor for the whole pocket. Each
residue is evaluated only once.

Charge Score

According to (http://www.info.univ-angers.fr/~gh/Idas/proprietes.htm) the charge of each amino
acid in the binding site is tracked. The mean charge for all amino acids in contact with at least one
alpha sphere of the pocket is calculated to form this charge score. Each residue is evaluated only
once.

Volume Score

Similarly to other descriptors, this one is based on data published on (http:/www.info.univ-
angers.fr/~gh/Idas/proprietes.htm). This data resumes relative volume of different amino acids. In
order to calculate this descriptor the mean volume score of all amino acids in contact with at least
one alpha sphere of the pocket is calculated. Each residue is evaluated only once.

Composition of amino acids

As the name indicates, fpocket tracks the composition in amino acids of binding pockets. If at
least one atom of a residue is in contact with at least one alpha sphere of a binding pocket it is
accounted to be part of the binding site. This descriptor is returned as cumulative list, for instance
you can find 2 valines, 3 glutamates etc... in the binding site.

Occurences of amino acids in different descriptor outputs are given in the following order : Ala,
Cys, Asp, Glu, Phe, Gly, His, Ile, Lys, Leu, Met, Asn, Pro, Gln, Arg, Ser, Thr, Val, Trp, Tyr.

Pocket volume
As indicated by the name, this descriptor tries to evaluate the volume of a binding pocket using a

Monte-Carlo algorithm that calculates full volume occupied by all alpha sphere in a given pocket.
The number of iteration of this algorithm can be controlled using fpocket input parameters.

25


http://www.info.univ-angers.fr/~gh/Idas/proprietes.htm
http://www.info.univ-angers.fr/~gh/Idas/proprietes.htm
http://www.info.univ-angers.fr/~gh/Idas/proprietes.htm

Advanced features

B-factor score (normalized)

Please handle with a lot of care this score with native crystal structures. This score is based on
the mean B-factor of all atoms of the binding pocket (atoms that are contacted by at least one alpha
sphere). As the B factor does not necessarily reflect flexibility in crystal structures, this score is
somehow abusive. However, one could imagine performing molecular dynamics or other in order to
determine relative flexibility of atoms and store this information in the B-factor column of the PDB
file format.

This descriptor is normalized with other pockets of the same protein.

Cofactor definition

fpocket, dpocket and tpocket contain in the current release (1.0) a fixed set of cofactors. So far so
good, but what for? Cofactors are often structurally necessary or must be present in the protein
structure for ligand binding. The PDB nomenclature, however, treats them as usual hetero atoms,
using the HETATM tag. This is the tag that fpocket uses to identify and eliminate crystallographic
waters and possible ligands of holo protein structures. In order to force fpocket to keep the cofactor
you are interested in, that is to say, to consider it as entire part of the protein structure for binding
pocket detection, a list list of HETATM names is defined in the beginning of the r pdb. ¢ file under
the name st ati ¢ const char *ST_keep_het at ni]. The next line of code defines the number
of cofactors defined in this list : static const int ST_nb_keep_hetatm = 111 ;

If you would like to add a new cofactor, you have to modifiy this code. First you add the whished

HETATM tag to ST_keep_het at min the end of the list. Thus for example, MSE will become

MSE , PTE if your cofactor has the HETATM tag PTE. Do not forget to increment the
ST_nb_keep_het at mvariable to 112, else this cofactor will not be taken into account.

Next you have to recompile the program, before being able to use this new definition.
In future releases this cofactor definition will be done dynamically with an external list.

The following list resumes the cofactors fpocket considers as recurrent in the PDB and useful to
keep in protein structures in a systematic manner.

HETAT HETATM HETATM
name name name
M tag tag tag
hea Heme-a hbi 7,8-dihydrobiopterin bio Biopterin
cfm Fe-mo-S cluster clp Fe-S cluster fes Fe2/s2 (inorganic)
cluster
f3s Fe3-s4 cluster fs4 Iron/sulfur cluster bph Bacteriopheophytin a

26-



Advanced features

bpb Bacteriopheophytin B bcl Bacteriochlorophyll a bcb Bacteriochlorophyll B
cob Co-methylcobalamin zn Zinc ion fea Monoam.c.lo—mu—oxo—
diiron
feo Mu-oxo-diiron h4b 5’6’7’.8 T bh4 (6r1'R,2 S)._ 5’6’7f8
tetrahydrobiopterin tetrahydrobiopterin
bhs 65_5’6’7’8_ . hbl 7.8 ]?1hydr.o— L- thb Tetrahydrobiopterin
tetrahydrobiopterin Biopterin
ddh Diacetyldeuteroheme dhe Heme D has Heme-as
Cis-heme D Dimethyl propionate
hdd hydroxychlorin gamma- hdm Y prop heb Heme B/C
: ester heme
spirolactone
hec Heme C heo Heme O hes Zinc substguted heme
[7.12- DIETHYL-
3,8,13,17-
TETRAMETHYL-
hey 1,3-Dedimethyl-1,3- mhm 21H,23H- PORPHINE- om Siroheme
Divinyl Heme 2,18- DIPORPANOTO-
-
N21,N22,N23,N24,]
IRON
ver Iron-octaethylporphyrin 1th 12-phenylheme 2fth 2-phenylheme
2 iron/2 sulfur/6 2 iron/2 sulfur/5 Smallest hf-0xo-
hcO carbonyl/1 water hel carbonyl/2 water hf3 )
. . . . phosphate cluster hf3
inorganic cluste inorganic cluster
hf5 Hf oxo cluster hf5 nfs Fe(4)-ni(1)-S(5) cluster omo Mo(vi)(=0)(oh)2
cluster
phf Hf-oxo-phosphate sf3 Fe4-s3 cluster sf4 Iron/sulfur cluster
cluster phf
cfm Fe-mo-S cluster cfn Fe(7)-mo-S©)-N clf Fe(8)-S(7) cluster
cluster
clp Fe-S cluster cnl Oxo-iron cluster 2 cnb Oxo-iron cluster 1
cnf Oxo-iron cluster 3 cub Cu(l)—S—'mo(lv)(=O)0— cum Cu(i)-S-mo(vi)(=O)oh
nbic cluster cluster
cun Cu(i)-S-mo(iv)(=0)oh cuo Cu2-02 cluster fs2 Fe-S-O hybrid cluster
cluster
fso fron/sulfur/oxygen fisx FE4-$3-03 Cluster ho Pheophytin a
hybrid cluster ’ ) p phy
4-bromo-3-hydroxy-3-
bhi methyl butyl chl Chlorophyll B cll Alpha chlorophyll a
diphosphate
cl2 Beta chlorophyll a cla Chlorophyll a cch Clorocruoro HEM
cfo Chloro d.nron-oxo fe2 Fe (ii) ion fci Ferricrocin-iron
moiety
fco Carbonmonoxide- fde Tron(iii) dicitrate fea Monoazido-mu-oxo-
(dicyano) iron diiron
feo Mu-oxo-diiron fne (mu-sulphido)-bis(mu- hif Fe(iii)-(4-

27-




Advanced features

cys,S)-[tricarbonyliron-
di-(cys, S)nickel(ii)] mesoporphyrinone)
(Fe-ni)
ofo Hydroxy <.111ron-oxo pfc Phenylferricrocin-iron he5 ZND-DME
moiety
Bis(5-amidino- Bis(5-amidino-
baz benzimidazolyl)methan boz benzimidazolyl)methan fe Fe (iii) ion
e zinc one zinc
hem Protopo.rp'hyrm X heo 2-acety1—pr9top0rphyr1n lep Coproporphyrin i
containing Fe X
cln Suﬁhrsubsngnéd coh Pnﬁopo;phynnlx cp3 Coproporphyrin iii
protoporphyrin ix containing co
deu Col(iii)- o fdd Fe(iii) 2,4-d1rnc.3th'yl fde Fe(iii) o
(deuteroporphyrin ix) deuteroporphyrin ix deuteroporphyrin ix
Fe-(4- Protoporphyrin ix
fec FE-Coproporphyrin IIT fmi mesopotphyrlnone)-R- heg containing Mg
isomer
heg Protopc?rphyrln ix hni Protopor.phyr}q ix mmp N- .
containing Mg containing ni(ii) methylmesoporphyrin
Manganese Protoporphyrin ix N-
mnh ganese mnr porpuy mpl methylmesoporphyrin
protoporphyrin ix containing Mn .
containing copper
3 Coproporphyrin i cu tetracmue(:ltllznlles?i(g_i\)]_or ni Tetra|[N-methyl-pyridyl]
P containing co(iii) p YIPyrcylporp P porphyrin-nickel
hyrin
por Porphyrin Fe(iii) pp9 Protoporphyrin ix mse Selenomethionine

Customizing fpocket

This section will introduce several ways of customizing fpocket by modifying the source code.
We will first gives all instructions needed to recompile and rebuild the full package when any
modification of the source code has to be taken into account. Then, we will describe how to write a
new scoring function, and how to write your own descriptors and include it to dpocket output. We
will not show the full content of the function to modify as we want to stay as concise as possible.
The newly added code for these examples will be highlighted in blue.

How to rebuild the package

After any modification to the fpocket source code, you will logically need to rebuild the package
so the modification could be taken into account. Here is the current procedure to do so:

$ cd PATH/fpocket-src-1.0

$ make uninstall

28-



Advanced features

$ make clean

Then, you will have to perform the installation process again to rebuild the package.

Writing your own scoring function

Writing your own scoring function using currently implemented descriptors is a simple task,
provided that you are not afraid to write one line of C code. Currently, the fpocket algorithm sort
pockets using each pocket score. Each score is calculated by a single function. The source file
src/pscoring.c contains the definition of this function that have the following prototype:

float score_pocket(s_desc *pdesc) ;
The function takes as argument a pointer to a structure that contains all descriptors currently
available in fpocket, and is called for each pocket to be scored. All descriptors available have been

described previously, and you can check the exact name given to each of them in the source file
headers/descriptors.h that defines the s_desc structure shown here.

Lets say that you just want to score pockets according to the number of alpha sphere of each pocket.
To do so, you just have to change the content of score_pocket function and return the right value:

float score_ pocket(s_desc *pdesc)
{
float score = (float) pdesc->nb_asph ;

return score ;

}

Although this example is really simple, you may now understand that you can write any kind of
scoring function, like a linear or non-linear combination of descriptors derived from a regression
model or any other method. The only limitation is the use of available descriptors implemented in
fpocket.

Of course, although the current scoring function has very satisfying performances using only 4 of
the available descriptors, you may want to implement your own set. The next section will give you
the basics to do so.

Writing your own descriptor

So what if you want to write your own descriptors? Well this will be a little more difficult that
writing your own scoring function, but nothing is impossible!

Suppose that we want to add a new (and very simple) descriptor: the maximum alpha sphere
radius in a given pocket.

First of all, you have to add the variable that will store your descriptor to the structure containing
all descriptors. This has to be done in the descriptor.h source file, in the definition of the structure
s_desc. We will add the following line:

typedef struct s_desc
{

-20.



Advanced features

float as_max r ;
} s_desc ;
After adding our variable, we need to give a default value when no calculation have been
performed, lets say -1. This is done in the function reset_desc located in the same file:
void reset_desc(s_desc *desc)
{ aoc
desc->as max_ r = -1.0 ;
}

Let's now implement our descriptor. Go to the src/descriptor.c source file. In this file, you fill
find the main function that calculate descriptors based on a list of atoms and a list of alpha sphere.
Here is the prototype of this function:

void set descriptors( s_atm **tatoms, int natoms,
s_vvertice **tvert, int nvert,
s_desc *desc) ;
As you can see, the function takes in argument a list of atoms, a list of vertices, and an
input/output descriptor structure that will actually store all descriptors calculated. When descriptors
has to be calculated on a given pocket, we first get all atoms and vertices of the pocket, and we call

this function using those atoms and vertices as arguments. The calculation then use information on
atoms and vertices to calculate descriptors.

Based on those parameters, you will have to write your own code in this function, and update in
consequent the desc variable given in argument so the descriptor value could be stored. Lets do
this. You will probably notice that the current code is not fully modular. This is because of
computational optimization: a fully modular code sometimes requires additional loop and treatment
compared to an optimized code. Anyway, the task is still very simple. Lets go into the part of the
code that will do the job.

void set_descriptors( s_atm **tatoms, int natoms,
s_vvertice **tvert, int nvert,
s_desc *desc)
{
float as max r = -1.0 ; /* Declare and initialize the descriptor */

for(i = 0 ; i < nvert ; i++) {
/* Loop through all vertices and update descriptors */
vcur = tvert[i] ;
if(vcur->ray > as_max_r) as_max r = vcur->ray ;

desc->as max_r = as_max_r ; /* Store the descriptor */

-30-



Advanced features

}

That's it, your descriptor is implemented, as each pocket descriptors is automatically calculated
using this function at the end of the fpocket algorithm. Thus, it can now be used in the scoring
function described previously, after rebuilding the package of course.

Normalizing your descriptors

An advantage of normalization is that two descriptors generated from pockets of two different
proteins can be compared to each other at a certain degree, depending on the normalization process.
For example, if we normalize the number of alpha sphere between 0 and 1 (well here it's more a
scaling than a normalization), the largest pocket of any protein will always have 1 as value for the
normalized descriptor.

To do so, we can't use the exact same process as adding a given descriptor, because all
descriptors of all pockets need to be calculated before the normalization step. Consequently, the
calculation of all normalized descriptors is currently performed in the src/pocket.c source file. In
this file, the function set_nornal i zed_descri ptors does the job, and have the following
prototype:

void set normalized_descriptors(c_lst_ pockets *pockets)
As you can see, it simply takes in argument a list of pockets, in fact a simple chained list, e.g. all

pockets found in a given protein. Of course each pocket contained in this structure have a descriptor
structure associated with.

Lets now enter more deeply into the code, and implement a normalized version of the new
descriptors so it ranges between 0 and 1. The first step is similar to the first step needed to
implement a new descriptors: you need to add a variable that will store this normalized descriptor in
the structures pdesc:

typedef struct s_desc
{
float as_max r ;
float as_max r norm ;
} s_desc ;
You can now add the default initialization of this descriptor:
void reset_desc(s_desc *desc)
{
desc->as max r = -1.0 ;

desc->as_max_r norm = -1.0 ;

Lets implement the descriptor now. Go to the src/pocket.c  source file,
set _normal i zed_descri pt or function. To calculate the normalized descriptor, we need the min
and max value of the non-normalized descriptors. Next, we have to loop on the pocket list, update
the min and max if necessary, and perform the normalization at the end of the loop. So easy:

-31-



Advanced features

void set normalized descriptors(c_lst pockets *pockets)

{
/* Declare min and max */
float as max r m = 1000, /* Initialize to a large value*/
as max_ r M = -1.0 ; /* Initialize to a small value */

cur = pockets->first ;
/* Perform a first processing step, e.g. to set min and max */
while(cur) {
dcur = pcur->pdesc ;
if (cur == pockets->first) {
/* If it is the first pocket, min = max = pocket */

as max rm = as max r M = dcur->as max r ;

else {

/* If it is the Nth != 1 pocket, check and update
min and max if necessary*/
if (dcur->as_max_r > as_max_r M)
as_ max r M = dcur-> as_max_r ;
else if(dcur->as _max_r < as_max_m)
as_max_r m = dcur->as_max_r ;

}

cur = cur->next ;

/* Perform a second loop to do the actual normalisation */
cur = pockets->first ;
while(cur) {

dcur = cur->pocket->pdesc ;

dcur->as _max_r norm = (dcur->as_max_r - as_max _r m)

/ (as_max_r M - as_max_r_m) ;

}
And that's it. There is a little bit more effort to provide here to normalize the descriptor, but we

-32-



Advanced features

believe it's not that much to do.

Unfortunately, we haven't taken the time to automatically add any new descriptor to the dpocket
input. So basically here, your descriptors is implemented and can be used by a scoring function, but
is not written to the dpocket output. The next paragraph will learn you how to so, it's very easy.

Including your descriptor in dpocket

Although it would be possible, we haven't taken the time to construct a system that would detect
and add automatically any new descriptor to the dpocket output.

So let's do this manually. The dpocket output format is defined by 3 macro in the dpocket.h
header file:

#define M_DP_OUTP_HEADER "pdb lig ...”
#define M_DP_OUTP_FORMAT "$s 35 ...”
#define M DP_OUTP_VAR (fc, 1, ovlp, status, dst, lv, d) fc, 1,

The first macro define the header of the output file. The second macro correspond to the format
of each value to output given to the fprintf function. Finally, the last macro are the list of variable,
with d being the pointer to the descriptor structure defined previously. Basically, writing the dpocket
output for each pocket requires two main processes: write the header, and loop to write each pocket
descriptors.

To include our descriptor into the dpocket output, we just need to add the header label of the
descriptor, add the output format of the descriptor, and add the descriptor itself. Those three steps
will modify the first, the second, and the third macro defined previously, respectively. The only
difficulty is to keep the correspondence between of all 3 positions (header, format and variable) in
the line: column number (position) of the header corresponding to the number of alpha sphere must
correspond the that of the format and variable. For example, if we want to add our normalized
variable at the first position of dpocket output, it would give:

#define M DP_OUTP_HEADER "as max r pdb lig ...”
#define M_DP_OUTP_FORMAT "%$3.5f %s %s ...”

#define M DP_OUTP_VAR (fc, 1, ovlp, status, dst, lv, d) d->as_max r,
fc, 1, ovlp,

That's pretty all. Remember to be careful on this step: adding a new descriptor to dpocket is
really easy in theory, but losing the correspondence between header, format and variable position
columns is easy too, in which case interpretation, visualization and analysis of dpocket output
become somehow difficult or even meaningless.

-33-



	Notes
	Contents
	Introduction
	License & Copyright
	Contributions
	Publication

	Installation
	Prerequisites
	Dependencies
	System Requirements
	How to install fpocket
	Known Bugs

	Getting Started
	fpocket	
	Example
	Basic input		
	Output

	dpocket
	Example
	Basic input
	Output

	tpocket
	Example – tpocket on apo structures
	Input
	Output


	Advanced features 
	fpocket
	Input command line arguments
	Output files description

	dpocket
	Input command line arguments
	Output files description

	tpocket
	Input command line arguments
	Actual pocket definition for evaluation of fpocket

	Pocket descriptors
	Number of alpha spheres (normalized) *
	Density of the cavity (normalized) *
	Polarity Score (normalized) *
	Mean local hydrophobic density (normalized)*
	Proportion of apolar alpha spheres (normalized) *
	Maximum distance between two alpha sphere (normalized) 
	Hydrophobicity Score 
	Charge Score
	Volume Score
	Composition of amino acids
	Pocket volume
	B-factor score (normalized)

	Cofactor definition
	Customizing fpocket
	How to rebuild the package
	Writing your own scoring function
	Writing your own descriptor
	Normalizing your descriptors
	Including your descriptor in dpocket



