STUDIES ON POTENTIAL STAT-3 INHIBITORS:
REACTIVITY AND BEHAVIOUR OF FURAZAN DERIVATIVES

Masciocchi Danielaa; Villa Stefaniaa; Gelain Ariannaa; Meneghetti Fiorellaa; Pedretti Alessandroa; Barlocco Danielaa; Kwon Byoung-Mog b

aDipartimento di Scienze Farmaceutiche “Pietro Pratesi”, Università degli Studi di Milano, via L. Mangiagalli 25, 20133 Milano, Italy
bDepartment of BioMolecular Science and Biotechnology, Korea Research Institute of Bioscience and Biotechnology, 52 Uendong Yoosung, Daejeon 305-600, South Korea
arianna.gelain@unimi.it

Signal transduction and activator of transcription 3 (STAT-3) is a latent cytosolic protein member of STAT family that transmits cytoplasmic signals (e.g. from growth factors, polypeptide cytokines) to the nucleus1. The mechanism of activation provides the STATs recruitment to phosphorilated receptors \textit{via} their SH2 domain. STAT-3 is involved in cell growth and survival but STAT-3 signalling might contribute to malignancy by preventing apoptosis: even if the molecular mechanism of oncogenesis by STAT-3 must be clearly defined, STAT-3 is constitutively activated by aberrant upstream tyrosine kinase activities in a broad spectrum of human solid and blood tumours. As reported, the blocking of constitutively activated STAT-3 signalling leads to apoptosis of tumour cells2-4 but does not affect normal cells5-6. Therefore, inhibition of STAT-3 could be a leading target for cancer therapy.

Our preliminary studies were focused at the discovery of new small molecules as potential STAT-3 inhibitors. On these bases, we decided to explore the reactivity of a relatively poorly studied heterocycle, namely furazan (1,2,5-oxadiazolic) ring and we planned the synthesis of a new series of compounds:

\[
\begin{align*}
\text{R} & = \text{CH}_3, \text{CH}_2\text{OH}, \text{COOCH}_3, \text{C}_6\text{H}_5 \\
\text{X} & = \text{NHCO}, \text{NHSO}_2, \text{NHCN}\end{align*}
\]

The synthetic procedures applied for the preparation of the new derivatives as well as the results of their biological evaluation, modelling and crystallographic studies will be presented.